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@aaflma

> Models for repairable systems must be able to describe the occurrence
of events in time, and are thus inherently different from models non-
repairable systems.

> Renewal Process: (good - as — new) A repaired unit is always brought
to a like-new condition - time between failures are independent and
identically distributed (iid). For this reason, the renewal process cannot
be used to model a system experiencing deterioration or reliability
Improvement. (examples: Gamma).

> Non-homogeneous Poisson Process (NHPP): (same —as - old )
Following the repair, the system is returned to the state just prior to
failure. (examples: Weibull / Power Law)

> In practice, neither process seems realistic. In-many cases, a repaired
unit is in better condition than it was just before failure, but still not in a
like-new condition
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> Inhomogeneous gamma process (Berman 1981): Suppose that events, or
shocks, occur according to an NHPP with intensity function u(t), and
suppose that a failure occurs not every shock but at every Kappa(th)

shock, where Kappa is a positive integer.

> The joint probability density function for the first n failures is given by

exp[ -U(t;)]
[G(k)]"

e it
ft,t,,..t) :10 u(t)[U (&) - Ut )] t); X
I .

i-1

» U(t) isthe expected number of shocks beforetimet and isdefined as

U (t) = é u(x) dx
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> If for example Kappa (k) equaled 4, then every fourth shock would cause a
failure

> A failed and repaired unit would be better than it was just before failure,
since in order to cause another failure the required improvement
parameter (Kappa) must accumulate to four again. A failed and repaired
unit would not necessarily be as good as new.

> Parameter definitions
> Kappa : measure if the improvement effected by the repair

> Beta: is a measure of the system improvement or deterioration over
the course of a systems life

> Theta: Scaling parameter (units)
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(Special Cases)
@aaflma

> There are three special cases of the Modulated Power Law Process

M odulated Power Law Process

s

Gamma Renewal Power Law Process
Process Just prior to failure
Like-New (kappa = 1)
(Beta=1)

Homogeneous Poisson

Process
(Beta= Kappa=1)
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Point Estimation
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>  If we take partial derivatives of the likelihood function with respect to
theta,beta, and kappa we obtain the likelihood equations

I@.b.k)=-82 +nin(b)- nin(Gk )= nbk Ing + (b - D& Int +(k - 1)aln( gl

ed g =1
Betay
t . y
‘ﬂl E;eBetaoae n 9 gt g(mBeta)Kappa)P: ’

‘ITq g@Thetag @ Thety = ¢ Theta (
eta 5 n 0 € en Beta ko€ Beta L.uu
%tﬂ O aetn oil - (n>Kappa>kn(Theta)+€e In(t)9 E(Kappa- 1)>fé - ( ) *n(tk)l' E(k 1) *n(tk )LLL
@Thetag e eThetpdl cBetag cad Mi.Te ¢a ,(t )Beta_ ( )Betalj Cln
ej =1 g € €k=1 elk Ksl/ g U CC

n
'ﬂ_:( = (- nPsi(Kappa)) - (nmBetain(Thetg) + a Ine
i=1

(tl) Beta (ti- l) BetaE Lo

> = Here Psi denotes the di-gamma function e = GQ(X%;(X)



N D | A Modulated Power Law Process

Asymptotic Confidence Intervals
@aaflma

>  Without pivotal quantities, we must resort to asymptotic confidence
intervals for the parameters. The asymptotic distribution of the
estimator

9.6
> Is multivariate normal with mean and covariance
m=[g,b.k] & =[3(@,bk)"*
> Where the J matrix is the Jacobian and contains the second patrtial

derivatives of the likelihood function. Approximate confidence
intervals for the parameters are given by

q+ z%\/(l,l)entry[J ((i b, I()]'l b + za/z\/(2,2)entry{J ((i B,K)]'l K + Z,, \/(3,3)entry[J (d b, R)]'l
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Modulated Power Law Process

Simulation Results
95% Confidence I ntervals (no transfor mation)

Theta Beta Kappa N Theta Cl % | Beta Cl % | Kappa Cl %
200 0.75 1 10 77.6 89.7 97.1
200 0.75 1 20 85 93.9 95.8
200 0.75 1 30 86.8 92.9 95.5
200 1 1 10 81.2 92.4 97.6
200 1 1 20 87.1 93.8 96.6
200 1 i 30 89.6 92.9 95.8
200 185 1 10 80.2 91 96.7
200 1.5 1 20 90.1 93.7 96.2
200 1.5 1 30 91.5 96.6 95.4

Theta Beta Kappa N Theta Cl % | Beta Cl % | Kappa Cl %
200 0.75 2 10 74.8 89.8 98.1
200 0.75 2 20 85.3 92.7 96.3
200 0.75 2 30 85.1 93.1 96.4
200 1 2 10 78.5 88.4 o8
200 1 2 20 88 93.3 96
200 1 2 30 90.7 94.1 96.3
200 L AS) 2 10 81.8 88 o8
200 1.5 2 20 88.7 93 95.7
200 1.5 2 30 90.1 92.2 96.9

Theta Beta Kappa N Theta Cl % | Beta Cl % | Kappa Cl %
200 0.75 3 10 74.7 90.3 97.8
200 0.75 3 20 85 92.1 96.4
200 0.75 3 30 85.5 93.1 95.6
200 1 3 10 80.4 90.1 98.5
200 1 3 20 86.4 91.5 96.9
200 1 3 30 86.9 94.2 96
200 135 3 10 81.1 87.4 o8
200 L. 5 S8 20 88.3 91.6 96.3
200 185 3 30 89.2 92.3 96.3




Modulated Power Law Process
N D |A Asymptotic Confidence Intervals

@aaflma (log transformation - continued)

> The approximate confidence intervals are therefore:
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Modulated Power Law Process

Simulation Results

95% Confidence Intervals (log transfor mation)

Theta Beta Kappa N Theta Cl % | Beta Cl % | Kappa Cl 2%
200 0.75 1 10 86.3 85.5 85.8
200 0.75 1 20 89.9 89.6 89.7
200 0.75 1 30 91.5 92.5 92.9
200 1 ik 10 87.6 88.1 86.2
200 1k 1 20 90.9 90.7 92.6
200 1 1 30 90.5 91.5 91
200 L 45) 1 10 85.7 87.1 85.8
200 s 1 20 91.9 91 91
200 1.5 1 30 91.9 91.8 92.4

Theta Beta Kappa N Theta Cl % | Beta Cl % | Kappa Cl %
200 0.75 2 10 88.7 87.9 85.8
200 0.75 2 20 93 92.3 91.8
200 0.75 2 30 92.5 93.2 91.4
200 1l 2 10 88.5 87 87.2
200 1 2 20 93.3 92.4 93
200 al 2 30 93.1 93.2 93.9
200 1.5 2 10 88.6 85.7 84.2
200 1.5 2 20 91.8 90.9 91.5
200 1.5 2 30 92.7 92.6 91.9

Theta Beta Kappa N Theta Cl 2% | Beta Cl 20 | Kappa Cl %o
200 0.75 3 10 88.1 88.2 85
200 0.75 3 20 91.9 91 91.1
200 0.75 3 30 93.5 92.8 92.6
200 al 3 10 88.4 87.6 86.6
200 1 3 20 91.4 89.7 90.2
200 al 3 30 93.6 93.7 91.8
200 qg.5 3 10 88 86.8 84.9
200 1.5 3 20 92.8 91.2 90.7
200 1.5 3 30 92.1 91.6 91.3
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|
I . .
N D |A | Simulation Results
|
|
|

Comparison of 95% Confidence Intervals (standard vs. log
transformation) that include Kappa =1

@Jyﬂf/,va

. s || I || | I
Theta Beta Kappa N Include Kappa =1| Inlcude Kappa =1 (log)
200 0.75 ik 10 97.1 85.8
200 0.75 1 20 95.8 89.7
200 0.75 1 30 95.5 92.9
200 1 1 10 97.6 86.2
200 1 1 20 96.6 92.6
200 1 1 30 95.8 91
200 1.5 1 10 96.7 85.8
200 1.5 1 20 96.2 91
200 1.5 1 30 95.4 92.4
200 0.75 2 10 95.8 39.4
I 200 0.75 2 20 57.4 22.2
200 0.75 2 30 27.1 9.6
200 il 2 10 97.5 42
200 1 2 20 60.9 21
200 1 2 30 28.8 10
I 200 1.5 2 10 95.2 40.2
200 1.5 2 20 57.6 20.5
200 1.5 2 30 30 9.5
200 0.75 3 10 87.2 112
I 200 0.75 3 20 11 1.4
200 0.75 3 30 0.7 0.1
200 1 3 10 87.3 10.7
200 1 3 20 11.8 1
200 1 3 30 0.8 0
200 1.5 3 10 86.6 12.1
200 1.5 3 20 11.2 0.8
200 1.5 3 30 0.4 0.1
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Hypothesis Testing
@aaflma

> Previously we discussed the special cases of the MPLP. This leads to
the following tests of hypothesis

H,:k =1 versus H, :k 1 1 (model reduces to the Power Law Process)

H,:k =1 versus H, :k 1 1 (model reduces to Gamma renewal process)

H,:k =1 versus H, :k 1 1 (model reduces to homogeneous Poisson Process)

>  Since the exact distributions of the estimators are intractable, we rely
on asymptotic results. The likelihood ratio test statistic is given by

max L(g,b,k)

IR = (qbk)s
max L(g, b,k
max @.b.k)




Modulated Power Law Process
N D |A Hypothesis Testing

@Jymy,vg (continued)

> Testl: Hy:k =1 Ifthe Null hypothesis is true, then the failure
process is a power law process with parameters ¢, b

. qrpk LQ:IPLP Dep, 1)
Rop = ( b k)

max L
(9.b k) a4

- n F A5
>  Where b PLP nl— and - ”1
a Iog— v

=1 |

> Reject Hjy:k =1 if - 2logLR, . >c’. (D)



Modulated Power Law Process
N D |A Hypothesis Testing

@Jymy,vg (continued)

> Testll: H,:k =1 Ifthe Null hypothesis is true, then the failure process
is a gamma renewal (times between failures are iid random variablésiM (k,q)

max Ldoee LK cre )

_ [@bk)s
R = max L(q b k)

@.bk)

> The MLEs of theta and kappa do not have a closed form expression and must
be solved by numerical methods. Differentiating the likelihood function and
setting the results equal to zero leads to

q :% logk - G((k%;(k)' Iog(%) %= (0 x)"

> Reject Hy:b=1 if - 2logLR,» > (1)
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N D |A Hypothesis Testing

@Jymy,vg (continued)

> Testlll: Hyo:b =k =1 |fthe Null hypothesis is true, then the
failure process is a homogeneous Poisson process (times between
failures are iid EXP(Q) random variables).

max L{GyeeL1)

LRHPP q b k)| Si
(Enﬂ( L(q b k)
~ t
>  Where - W= '
n

> Reject Ho:b=k=1 i - 2logLRg >cf,(2)
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Simulation Results — Hypothesis Testing
@aaflma

TEST: BHa&b 5188 " 1

N Theta Beta Kappa | Reject Ho
20 200 1 3 6.00%
20 200 1.25 3 45.70%
20 200 1.5 3 88.60%
20 200 2 3 99%

N Theta Beta Kappa | Reject Ho
30 200 1 3 5.90%
30 200 1.25 3 67.30%
30 200 1.5 3 97.40%
30 200 2 3 98.4%

Results of hypothesis test on Beta with alpha =".05
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Simulation Results — Hypothesis Testing

@aaflma
TEST: H,:k=1"H_,:kt1
N Theta Beta Kappa | Reject Ho
20 200 8BS 1 6.00%
20 200 1.5 156 34.70%
20 200 -5 2 71.70%
20 200 1.5 D 90.8%
20 200 1.5 3 98.4%
20 200 1.5 4 100%
N Theta Beta Kappa | Reject Ho
30 200 1.5 1 5.70%
30 200 1.5 1.5 45.93%
30 200 1.5 2 86.90%
30 200 1.5 2.5 98.9%
30 200 1.5 3 100.0%
30 200 L5 4 100.0%

Results of hypothesis test on Kappa with alpha = .05
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Mission Readiness
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>  From the definition of the Inhomogeneous Gamma Process

-10exp(-L(t))

A
O! @)L(t)- L.

|
(s 2. : | ]
(it 510 I
where L(t) = d (t)dt and | (t) = ?lgig
0 ed &d g

> READINESS: Probability of no failures P( N=0) in a specified mission
time given the current state of the system (conditional probability
density function).

f(t/t )=IlimPr{t<T <t+Dt/T_, =t)

D® 0
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N D |A Mission Readiness

@Jymy,vg (continued)

> Using the intensity function for the PLP

» Which reduces to

el 1oy e
() = bt eaéo_?nlgu expl aet_g_ nloUP
Gk’ Fas Saog Tk s § T
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> If we define

» then

Modulated Power Law Process
Mission Readiness
(continued)

B ..b
a(t)=h0 - 20
edg ed g

f (tn /tn-l) 7 q b g(k )tnb_la(tn)k-l eXp(- a(tn))
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N D |A Mission Readiness

@Jymy,yg (continued)

> The probability of no failures in a given mission time is given by

- b

O q° G(k )tnb_la(tn)k-l eXp(— a(tn)) dt
MissionEndlime P

» Select required aircraft with highest probability of mission completion
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> Modulated Power Law Process — provides ability to model improvement into
repairable systems.

>  Inference procedures capable of detecting special cases.

>  Asymptotic confidence intervals were very effective in simulation study ( nominal
level ) for sample size > 30.

>  Conditional distribution presented - Estimating probability of failure in a given
mission time (readiness).

»  Modulated Power Law Process provides insight into the overall support process.
Kappa can be used as support improvement measure.



